数组 Array
数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
- 线性表
- 连续的内存空间和相同的数据结构
如果我们申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。
根据下标随机访问数组元素的方式
一个长度为 10 的 int 类型的数组 int[] a = new int[10] , 计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。
通过下面的寻址公式,计算出该元素存储的内存地址:
一维数组内存寻址:
a[i]_address = base_address + i * data_type_size
二维数组内存寻址:
对于 m * n 的数组,a [i][ j ] (i < m,j < n)的地址为:
address = base_address + ( i * n + j) * type_size
数组是适合查找操作,但是查找的时间复杂度并不为 O(1)。即便是排好序的数组,用二分查找,时间复杂度也是 O(logn)。所以,正确的表述应该是,数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。
插入删除低效原因
假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。
如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)。
如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数组插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。
eg:
假设数组 a[10] 中存储了如下 5 个元素:a,b,c,d,e。
我们现在需要将元素 x 插入到第 3 个位置。我们只需要将 c 放入到 a[5],将 a[2] 赋值为 x 即可。最后,数组中的元素如下: a,b,x,d,e,c。
删除时,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。我们可以多次删除操作集中在一起执行
eg:
数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素
为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。
容器 ArrayList
针对数组类型,很多语言都提供了容器类,比如 Java 中的 ArrayList
- 优势:
- 可以将很多数组操作的细节封装起来,比如前面提到的数组插入、删除数据时需要搬移其他数据等
- 支持动态扩容 不过,需要注意,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小
- 不足:
- Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
- 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组
- 要表示多维数组时,用数组往往会更加直观